References, FISR 2019 project Omics4Cheese

  1. Berni Canani, R., De Filippis, F., et al. 2017. Appl. Environ. Microbiol. 83: e01206-17. https://dx.doi.org/10.1128/AEM.01206-17.
  2. Bertuzzi, A.S., Walsh, A.M., Sheehan, J.J., et al. (2018) mSystems 3:1–15 . https://dx.doi.org/10.1128/msystems.00211-17.
  3. Böhme, K., Calo-Mata, P., Barros-Velázquez, P., Ortea, I. 2019. TrAC Trends Anal. Chem. 110: 221–232. https://dx.doi.org/10.1016/j.trac.2018.11.005.
  4. Bokulich, N. A., Mills, D.A. 2013. Appl. Environmen. Microbiol. 79: 2519–226. https://dx.doi.org/10.1128/AEM.03870-12.
  5. Callahan, B. J., McMurdie, P. J., Holmes, S. P. 2017. ISME J. 11: 2639–4263. https://dx.doi.org/10.1038/ismej.2017.119.
  6. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A.J.A., Holmes, S. P. 2016. Nature Meth. 13: 581–583. https://dx.doi.org/10.1038/nmeth.3869.
  7. Cubero-Leon, E., Peñalver, R., Maquet, A. 2014. Frin 60: 95–107. https://dx.doi.org/10.1016/j.foodres.2013.11.041.
  8. De Filippis, F., Genovese, A., Ferranti, P., et al. 2016. Sci. Rep. 6: 21871. https://dx.doi.org/10.1038/srep21871.
  9. De Filippis, F., Parente, E., Ercolini, D. 2017a. Microbial Biotechnol. 10: 91–102. https://dx.doi.org/10.1111/1751-7915.12421.
  10. De Filippis, F., Laiola, M., Blaiotta, G., Ercolini, D. 2017b. Appl. Environ. Microbiol., 83: e00905–17. https://dx.doi.org/10.1128/AEM.00905-17.
  11. De Filippis, F., La Storia, A., Stellato, G. et al. 2014. PLoS One 9: e89680. https://dx.doi.org/10.1371/journal.pone.0089680.
  12. De Filippis, F., Parente, E., Danilo Ercolini. 2018a. Ann. Rev. Food Sci. Technol. 9. https://dx.doi.org/10.1146/annurev-food-030117-012312.
  13. De Filippis, F., Parente, E., Zotta, T., Ercolini, D. 2018b. Int. J. Food Microbiol. 265: 9–17. https://dx.doi.org/10.1016/j.ijfoodmicro.2017.10.028.
  14. Douglas, G. M., Maffei, V. J., Zaneveld, J. et al. 2019. bioRxiv 8 (June). https://dx.doi.org/10.1101/672295.
  15. Fiehn, O. 2002. Plant Mol. Biol. 48:155–171. https://dx.doi.org/10.1023/A:1013713905833
  16. Fouhy, F., Clooney, A. G., Stanton, C., Claesson, M.J., Cotter, P. D. 2016. BMC Microbiol. 16: 123. https://dx.doi.org/10.1186/s12866-016-0738-z.
  17. Garofalo, C., Osimani, A., Milanovic, V., Aquilanti, L., et al. 2015. Food Microbiol. 49: 123-133. https://dx.doi.org/10.1016/j.fm.2015.01.017
  18. Gasperi, F., Gallerani, G., Boschetti, A., et al. 2001. J. Sci. Food Agric. 81: 357–363. https://doi.org/10.1002/1097-0010(200102)81:3<357::AID-JSFA818>3.0.CO;2-O.
  19. Gobbetti, M., Di Cagno, R., Calasso, M., et al. 2018. Trends Food Sci. Technol. 78: 244–254. https://dx.doi.org/10.1016/j.tifs.2018.06.010.
  20. Guidone, A., Zotta, T., Matera, A., et al. 2016. Int. J. Food Microbiol. 216: 9–17. https://dx.doi.org/10.1016/j.ijfoodmicro.2015.09.002.
  21. Kuuliala, L., Al Hage, Y., Ioannidis, A.-G., Sader, M., Kerckhof, F.-M., Vanderroost, M., Boon, N. et al. 2018. Food Microbiol. 70: 232–44. https://dx.doi.org/10.1016/j.fm.2017.10.011.
  22. Le Boucher, C., Courant, F., Jeanson, S., et al. 2013. Food Chem. 141:1032–1040 . https://dx.doi.org/10.1016/j.foodchem.2013.03.094
  23. Marino, M., Dubsky de Wittenau, G., Saccà, E. et al. 2019. Food Microbiol. 79: 123–131. https://dx.doi.org/10.1016/j.fm.2018.12.007.
  24. Mauriello, G., Moio, L., Genovese, A., Ercolini, D. 2003. J. Dairy Sci. 86: 486–497. https://dx.doi.org/10.3168/jds.S0022-0302(03)73627-3
  25. Meola, M., Rifa, E., Shani, N., et al. 2019. BMC Genomics 20:560. https://dx.doi.org/10.1186/s12864-019-5914-8.
  26. Montel, M.-C., Buchin, S., Mallet, A., et al. 2014. Int. J. Food Microbiol. 177: 136–54. https://dx.doi.org/10.1016/j.ijfoodmicro.2014.02.019.
  27. Nature Editorial 2016. Nature Microbiology 1: 16112. https://dx.doi.org/10.1038/nmicrobiol.2016.112
  28. Parente, E., Cocolin, L., De Filippis, F., Zotta, T., et al. 2016. Int. J. Food Microbiol. 219 28–37. https://dx.doi.org/10.1016/j.ijfoodmicro.2015.12.001.
  29. Parente, E De Filippis, F., Ercolini, D. et al. 2019. Int. J. Food Microbiol. 305: 108249. https://dx.doi.org/10.1016/j.ijfoodmicro.2019.108249.
  30. Pisano, M. B., Scano, P., Murgia, A. et al. 2016. Food Chem. 192: 618–624. https://dx.doi.org/10.1016/j.foodchem.2015.07.061.
  31. Qin J, et al. 2010. Nature. 464: 59-65. https://dx.doi.org/10.1038/nature08821.
  32. Quince, C., Walker, A.W., Simpson, J.T., Loman, N.J., Segata, N. 2017. Nat. Biotechnol. 35: 833-844. https://dx.doi.org/10.1038/nbt.3935.
  33. Ricciardi, A., De Filippis, F., Zotta, T. et al. 2016. Int. J. Food Microbiol. 236: 138–417. https://dx.doi.org/10.1016/j.ijfoodmicro.2016.07.031.
  34. Sedlar, K., Kupkova, K., Provaznik, I. 2017. Comput. Struct. Biotecnol. J. 15: 48-55. https://dx.doi.org/10.1016/j.csbj.2016.11.005.
  35. Stellato, G., De Filippis, F., La Storia, A., Ercolini, D. 2015. Appl. and Envirn. Microbiol. 81:7893-7904. https://dx.doi.org/10.1128/AEM.02294-15.
  36. Vandeputte, D., Tito, R.Y., Vanleeuwen, R., Falony, G., Raes, J. 2017. FEMS Microbiol. Rev. 41: S154–67. https://dx.doi.org/10.1093/femsre/fux027.
  37. Walsh, A. M., Crispie, F., O’Sullivan, O. et al., 2018. Microbiome 6: 50. https://dx.doi.org/10.1186/s40168-018-0437-0.
  38. Yeluri, J., Bhagya. R., McSweeney, P. L. H. et al., 2018. Front. Microbiol. 9: 1890–1912. https://dx.doi.org/10.3389/fmicb.2018.01020.
  39. Zhou, J., He, Z., Yang, Y., Deng, Y., Tringe, S. G., Alvarez-Cohen. L. 2015. mBio 6 (1). https://dx.doi.org/10.1128/mBio.02288-14.